Abstract

In recent years, bone tissue engineering using cells, biomolecules, and scaffolds have made significant progress in the acute treatment of bone defects. In this study, a PLGA polymeric scaffold (40/60) was fabricated by solvent casting/salt leaching method using porogen (NaCl). The results of the structural analysis of the PLGA scaffold showed moderate porosity with pore sizes of 50 to 200 μm. Degradation of PLGA scaffold was found to be 80% for 80 hours as submerged in water. Water absorption by the scaffold was about 268.81% for 24 h of immersion. Cell biocompatibility tests showed optimal growth of LNCaP cell line on the scaffold. The growth and differentiation of MSCs on the scaffold occurred over a period of 21 days, which was confirmed by evaluating the expression of alkaline phosphatase (Alp) and osteopontin (Ops) genes. The amount of calcification of differentiated cells also confirmed the differentiation of MSCs into osteoblasts. Taken together, PLGA-based polymer scaffolds could potentially be used for tissue engineering, implant design, and drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.