Abstract

An antenna pattern synthesis technique is presented that permits the design of planar antenna arrays with footprint patterns of a specified boundary. This technique is applicable to planar arrays of a wide variety of grid structures and can produce patterns with controlled ripple and sidelobe levels. The approach involves two steps: the first consists in stretching the pure real-continuous aperture (an extension of circular Taylor distributions, developed by Elliott and Stern [1990]) into a distribution with a boundary that is inversely proportional to the flat-top beamwidth; the second is the minimization of a cost function (the square of the difference between the resulting power pattern and the desired one) using the Fletcher-Powell method. A square footprint, produced by a rectangular grid (obtained by sampling this distribution) with the corner elements appropriately removed, is presented as an illustration of the method. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.