Abstract

Modal transducers can be designed by optimizing the polarity of the electrode which covers the piezoelectric layers bonded to the host structure. This paper is intended as a continuation of our previous work (Donoso and Bellido J Appl Mech 57:434---441, 2009a) to make better the performance of such piezoelectric devices by simultaneously optimizing the structure layout and the electrode profile. As the host structure is not longer fixed, the typical drawbacks in eigenproblem optimization such as spurious modes, mode tracking and switching or repeated eigenvalues soon appear. Further, our model has the novel issue that both cost and constraints explicitly depend on mode shapes. Moreover, due to the physics of the problem, the appearance of large gray areas is another pitfall to be solved. Our proposed approach overcomes all these difficulties with success and let obtain nearly 0-1 designs that improve the existing optimal electrode profiles over a homogeneous plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.