Abstract
For the last 20 years, researchers have developed accelerometers to function as ossicular vibration sensors in order to eliminate the external components of hearing aid and cochlear implant systems. To date, no accelerometer has met all of the stringent performance requirements necessary to function in this capacity. In this work, we present an accelerometer design with an equivalent noise floor less than 20 phon equal-loudness-level over a 0.1-8 kHz bandwidth in a package small enough to be implanted in the middle ear. Our approach uses a dual-bandwidth (two sensing elements) microelectromechanical systems piezoelectric accelerometer, sized using an area-minimization process based on an experimentally-validated analytical model of the sensor. The resulting bandwidth of the low-frequency sensing element is 0.1-1.25 kHz and that of the high-frequency sensing element is 1.25-8 kHz. These sensing elements fit within a silicon frame that is 795 μm × 778 μm, which can reasonably be housed along with a required integrated circuit in a 2.2 mm × 2.7 mm × 1 mm package. The estimated total mass of the packaged system is approximately 14 mg. This dual-bandwidth MEMS sensor fills a technological gap in current completely implantable auditory prosthesis research and development by enabling a device capable of meeting physical and performance specifications needed for use in the middle ear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.