Abstract

The feasibility of a chemically amplified fully water-soluble negative-tone resist based upon the cross-linking of a poly(vinyl alcohol) (PVA) matrix resin has been demonstrated. Two-component resists incorporating PVA and (2,4-dihydroxyphenyl)dimethylsulfonium triflate as a water-soluble photoacid generator were formulated in deionized water and spin-coated onto bare silicon wafers. Negative-tone images were obtained upon irradiation at 254 nm, postbaking, and subsequent development in pure water. The two-component resist suffered from swelling during development, but improved performance was obtained through the addition of a cross-linking agent, hexamethoxymethylmelamine (HMMM). The resulting three-component, water-soluble resist was able to resolve micron-sized images using a 248 nm stepper, at a dose of ca. 200 mJ/cm2. Model studies conducted using 13C NMR monitoring with 2,4-pentanediol as a model for PVA showed that under acidic catalysis HMMM reacts to form active electrophilic species that add to the diol, affording ether linkages with concomitant liberation of methanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.