Abstract

A fully-vectorial mode solver based on the finite element method is employed in a combination with the downhill simplex method the dispersion optimization of photonic crystal fibers made from highly nonlinear glasses. The nonlinear fibers are designed for telecom applications such as parametric amplification, wavelength conversion, ultra-fast switching and regeneration of optical signals. The optimization is carried in terms of the zero dispersion wavelength, dispersion magnitude and nonlinear coefficient and confinement loss in the wavelength range around 1.55 microm. We restrict our work to the index-guiding fiber structures a small number of hexagonally arrayed air holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call