Abstract

We have engineered pH sensitive binding proteins for the Fc portion of human immunoglobulin G (hIgG) (hFc) using two different strategies – histidine scanning and random mutagenesis. We obtained an hFc-binding protein, Sso7d-hFc, through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus; Sso7d-hFc was isolated from a combinatorial library of Sso7d mutants using yeast surface display. Subsequently, we identified a pH sensitive mutant, Sso7d-his-hFc, through systematic evaluation of Sso7d-hFc mutants containing single histidine substitutions. In parallel, we also developed a yeast display screening strategy to isolate a different pH sensitive hFc binder, Sso7d-ev-hFc, from a library of mutants obtained by random mutagenesis of a pool of hFc binders. In contrast to Sso7d-hFc, both Sso7d-his-hFc and Sso7d-ev-hFc have a higher binding affinity for hFc at pH 7.4 than at pH 4.5. The Sso7d-mutant hFc binders can be recombinantly expressed at high yield in E. coli and are monomeric in solution. They bind an epitope in the CH3 domain of hFc that has high sequence homology in all four hIgG isotypes (hIgG1–4), and recognize hIgG1–4 as well as deglycosylated hIgG in western blotting assays. pH sensitive hFc binders are attractive candidates for use in chromatography, to achieve elution of IgG under milder pH conditions. However, the surface density of immobilized hFc binders, as well as the avidity effect arising from the multivalent interaction of dimeric hFc with the capture surface, influences the pH dependence of dissociation from the capture surface. Therefore, further studies are needed to evaluate if the Sso7d mutants identified in this study are indeed useful as affinity ligands in chromatography.

Highlights

  • The affinity and specificity of protein-protein interactions can be regulated by external pH

  • Bead-bound cells were discarded and further negative selection was performed against mouse immunoglobulin G (IgG), chicken immunoglobulin Y and rabbit IgG

  • We developed a screening strategy to isolate the pH sensitive hFc binder, Sso7d-ev-hFc, from a library of Sso7d mutants, generated by random mutagenesis of a pool of hFc binders

Read more

Summary

Introduction

The affinity and specificity of protein-protein interactions can be regulated by external pH. Maternal immunoglobulin G (IgG) binds the neonatal Fc receptor (FcRn) with high affinity at pH 6.0 and weakly at pH 7.4. Therapeutic proteins that are engineered to lose binding to their target receptor in the acidic environment of the endosome (pH 6.0) can escape endosomal degradation and result in increased half-life of the protein in the extracellular space. This paradigm has been used to engineer pH sensitive mutants of Granulocyte Colony Stimulating Factor (GCSF) [5] and therapeutic antibodies against the Interleukin-6 receptor (IL-6R) and Proprotein Convertase Substilisin Kexin type 9 (PCSK9) [3,4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.