Abstract

The interfacial interaction between the selective layer and porous substrate directly determines the separation performance and service lifetime of functional composite membranes. Till now, almost all reported polymeric selective layers are physically in contact with the substrate, which is unsatisfactory for long-term operation. Herein, we introduced a functional composite membrane with ultra-interfacial stability via layer integration between the polydimethylsiloxane selective layer and polyacrylonitrile substrate, where a facile light-triggered copolymerization achieved their covalent bonding. The critical load for the failure of the selective layer is 45.73 mN when testing the interfacial adhesion, i.e., 5.8 times higher than that before modification and significantly higher than previous reports. It also achieves superior pervaporation performance with a separation factor of 9.54 and membrane flux of 1245.6 g m-2 h-1 feeding a 1000 ppm phenol/water solution at 60 °C that is significantly higher than the same type of polymeric ones. Not limited to pervaporation, such a strategy sheds light on the design of highly stable composite membranes with different purposes, while the facile photo-trigged technique shows enormous scalability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.