Abstract
We describe a new method to synthesize a catalyst comprising of Pd nanoparticles encapsulated in a graphene oxide framework (Pd@GOF). GO was first intercalated with benzene-1,4-diboronic acid to afford a three-dimensional (3D) framework with uniform interlayer spaces, in which Pd nanoparticles were generated through salt reduction. Thus formed Pd nanoparticles were highly dispersed and stabilized inside a graphitic gallery space with a narrow particle size distribution. Thus obtained Pd@GOF catalyst exhibited an outperforming activity toward the Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents. Moreover, it can be reused for at least five cycles without any significant loss of the activity, while commercial Pd/C and Pd/GO exhibited a clear drop in the activity. These findings would establish the GOF as a promising scaffold to host noble metal nanoparticles and to construct desired metal@GOF nanocatalysts with improved activity and durability, which must be attractive for a broad range of practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.