Abstract

Concentric-tube robots for minimally invasive surgery pose a potential risk of tissue rupture because of the structural instabilities caused by high value of bending-to-torsional-stiffness ratio (EI/GJ). In this study, a novel optimization method based on metaheuristic optimization accelerated by a deep neural network (DNN)-based surrogate model to obtain optimized pattern parameters is presented. The method minimizes EI/GJ while conforming to the minimum compliance constraints and geometric restrictions. The proposed optimization process utilizes a DNN trained using 855 datasets generated by finite element analysis that cover the pattern design parameter space. The pattern design parameters were derived from topology optimization. The results demonstrate that the proposed optimization method yielded pattern designs that outperformed previous designs within a reasonable time frame (less than 900 s) without requiring manual parametric study or sensitivity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.