Abstract

A novel design of oversampled generalised discrete Fourier transform filter banks is proposed, with application to subband-based convolutive blind source separation (BSS), where either instantaneous BSS algorithms or joint BSS algorithms can be applied. Conventional filter banks design is usually focused on elimination of the overall aliasing error and the perfect reconstruction (PR) condition, which are required by traditional subband adaptive filtering applications. However, because of the unknown scaling factor, the traditional PR condition is not necessary in the context of subband BSS and can be relaxed in the design. Owing to the increased degrees of design freedom, the authors can introduce an additional cost function to enhance the mutual information between adjacent subband signals. Together with a reduced subband aliasing level, it leads to an improved subband permutation alignment result for instantaneous BSS and an overall better performance for the joint BSS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.