Abstract

Fire is one of the most common serious disasters in human society. It is a kind of burning phenomenon that is out of control in time and space. When a fire occurs, how to detect the fire quickly and remove it in the budding state has become the key content of fire control work. Outdoor fire is very common in our daily life, and once it occurs without effective and timely control, it will cause huge losses. Therefore, it is particularly important to study an intelligent alarm system for outdoor fire. Generally, fire detection technology can be divided into sensor fire detection technology and image fire detection technology. Sensor fire detection technology is low cost and easy to design, but its application field is limited. Under the interference of many factors outside, misjudgement and missed judgement will occur. Image fire detection technology can achieve certain detection function through manual design of features and classifiers, but there are still defects in the application in the actual diversified environment. With the development of neural network technology in recent years, it has made great breakthroughs in the field of image recognition. Its judgment type is obtained through a large number of data training algorithms. Because of its automatic feature extraction and classification characteristics, it can effectively adapt to the external environment. Therefore, this paper proposes an end-to-end two-stream neural network model to detect fires, uses fire video on the network to train the algorithm, and then uses the fire database to test. Compared with the existing fire detection algorithms, it is found that the proposed method has good practicability and versatility, and provides a good reference for the development of fire detection technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.