Abstract
Superhydrophobic TiO2 with great application potential is mainly obtained by surface modification with low surface energy organics, which is easily degraded under sunlight irradiation, which results in the loss of superhydrophobic properties. Herein, we developed a room-temperature pulsed chemical vapor deposition (pulsed CVD) method to develop amorphous TiO2-deposited TiO2 nanoparticles. The ultraviolet stability/ultraviolet-induced reversible wettability switch had been simultaneously realized by different and controllable deposition cycles of amorphous TiO2. The superhydrophobic properties of the organic-free TiO2 were determined by the micrometer-nanometer-sub-nanometer multiscale structure, the multiscale pore structure, and the large Young's contact angle resulting from carboxylic acid adsorption. Also, we found that the adsorption rate and adsorption stability of oxygen and water at the surface oxygen vacancies were the key to facilitate the reversible switching between superhydrophilic and superhydrophobic states, which was well demonstrated by experimental characterization and theoretical simulation. In addition, we also found that the resistance of dense amorphous TiO2 films on the TiO2 surface to the migration of photogenerated electrons and holes was the key to maintain the stable superhydrophobic properties of superhydrophobic TiO2 under ultraviolet illumination. The powders were strongly ground and the coating surface was rubbed on the surface of the sandpaper, which still maintained superhydrophobic properties, providing favorable conditions for the application of superhydrophobic TiO2. This work modulates the ultraviolet stability and dark/ultraviolet-induced switchable superhydrophobicity/superhydrophilicity of coated TiO2 by simply adjusting the number of deposition times in a pulsed CVD process for the first time, thus contributing to the development of organic-free superhydrophobic TiO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.