Abstract

ABSTRACTIn this study the adsorption equilibria of acetic, butyric, and oxalic acids onto Amberlyst A21 were investigated experimentally at 25°C. The process was optimized using response surface methodology (RSM). The time to reach the equilibrium state, effects of adsorbent amount, and initial acid concentrations on adsorption efficiency were investigated. Freundlich, Langmuir, and Temkin isotherms were applied to experimental data. The Freundlich isotherm revealed better results than the others. In addition to the main aim of this research, a statistical/mathematical approach – RSM – was utilized to simulate and determine the optimum conditions of acetic, butyric, and oxalic acids removal by Amberlyst A21 using three selected parameters (adsorbent dose, initial dye concentration, and type of acids). The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA). The optimum acid concentration, amount of adsorbent, type of acid, and removal of acid (%) were found by desirability function to be 0.199 mol/L, 1.999 g, butyric acid, and 84.537%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.