Abstract

This chapter focuses on the deadlock prevention problems in Flexible Manufacturing Systems (FMS), and the major target is to design more excellent controllers that lead to a more permissive supervisor by adding a smaller number of monitors and arcs than the existing ones in the literature for the design of liveness-enforcing Petri net supervisors. The authors distinguish siphons in a Petri net model by elementary and dependent ones. For each elementary siphon, a monitor is added to the plant model such that it is invariant-controlled without generating emptiable control-induced siphons, and the controllability of a dependent siphon is ensured by changing the control depth variables of its related elementary siphons. Hence, a structurally simple Petri net supervisor is achieved. Based on the previous work, this chapter explores two optimized deadlock prevention approaches based on elementary siphons that can achieve the same control purpose and have more excellent performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.