Abstract

The design of a low-dispersion fiber Bragg grating (FBG) with an optimal grating length using covariance matrix adapted evolution strategy (CMAES) is presented. A novel objective function formulation is proposed for the optimal grating length low-dispersion FBG design. The CMAES algorithm employs adaptive learning procedure to identify correlations among the design parameters. The design of a low-dispersion FBG filter with 25-GHz (or 0.2 nm in the 1550-nm band) bandwidth is considered. Simulation results, obtained using the codes available in public domain (the codes are available from the third author), show that the CMAES algorithm is more appropriate for the practical design of length optimized FBG-based filters when compared with the other optimization methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.