Abstract

In this article, a fuzzy logic based power system stabilizer (FPSS) is designed by tuning its input–output scaling factors. Two input signals to FPSS are considered as change of speed and change in power, and the output signal is considered as a correcting voltage signal. The normalizing factors of these signals are considered as the optimization problem with minimization of integral of square error in single-machine and multi-machine power systems. These factors are optimally determined with bat algorithm (BA) and considered as scaling factors of FPSS. The performance of power system with such a designed BA based FPSS (BA-FPSS) is compared to that of response with FPSS, Harmony Search Algorithm based FPSS (HSA-FPSS) and Particle Swarm Optimization based FPSS (PSO-FPSS). The systems considered are single-machine connected to infinite-bus, two-area 4-machine 10-bus and IEEE New England 10-machine 39-bus power systems for evaluating the performance of BA-FPSS. The comparison is carried out in terms of the integral of time-weighted absolute error (ITAE), integral of absolute error (IAE) and integral of square error (ISE) of speed response for systems with FPSS, HSA-FPSS and BA-FPSS. The superior performance of systems with BA-FPSS is established considering eight plant conditions of each system, which represents the wide range of operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call