Abstract

Nanophotonics is a rapidly emerging field in which complex on-chip components are required to manipulate light waves. The design space of on-chip nanophotonic components, such as an optical meta surface which uses sub-wavelength meta-atoms, is often a high dimensional one. As such conventional optimization methods fail to capture the global optimum within the feasible search space. In this manuscript, we explore a Machine Learning (ML)-based method for the inverse design of the meta-optical structure. We present a data-driven approach for modeling a grating meta-structure which performs photonic beam engineering. On-chip planar photonic waveguide-based beam engineering offers the potential to efficiently manipulate photons to create excitation beams (Gaussian, focused and collimated) for lab-on-chip applications of Infrared, Raman and fluorescence spectroscopic analysis. Inverse modeling predicts meta surface design parameters based on a desired electromagnetic field outcome. Starting with the desired diffraction beam profile, we apply an inverse model to evaluate the optimal design parameters of the meta surface. Parameters such as the repetition period (in 2D axis), height and size of scatterers are calculated using a feedforward deep neural network (DNN) and convolutional neural network (CNN) architecture. A qualitative analysis of the trained neural network, working in tandem with the forward model, predicts the diffraction profile with a correlation coefficient as high as 0.996. The developed model allows us to rapidly estimate the desired design parameters, in contrast to conventional (gradient descent based or genetic optimization) time-intensive optimization approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.