Abstract

We have developed a much sensitve technique to conduct magnetometry under ultrahigh pressures up to 6.3~GPa, which can detect a weak volume susceptibilities as small as $\sim 10^{-4}$. An opposed-anvil-type high-pressure cell is designed by numerical analysis to give nearly zero magnetic response, in a commercial SQUID magnetometer. We introduced procedures for subtracting background contributions from a high-pressure cell by taking displacements of the cell parts into account, and found a way of resolving tiny magnetism of a sample from given magnetometer response curves. A non-magnetic material, binderless tungsten carbide ceramic, is employed. To increase sample-signal-to-background ratio further, a conical shaped gasket and cupped anvils are introduced, yielding nearly ten times better space efficiency. The new set-up and analysis are applied to measure the paramagnetic susceptibilities of spin orbit entangled moment under pressures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.