Abstract

Measuring the states of optical polarization is crucial in many scientific and technological disciplines, and more recently towards the development of chip-scale or nanoscale polarimetry. Here we present a new design of on-chip Stokes polarimetric scheme based on polarization-dependent silicon photonic circuits. The structural elements including polarization rotator and splitter, directional coupler, and phase shifter are assembled to produce polarization-dependent silicon photonic circuits. The orthogonally linear, diagonal, and circular polarization components of the incident light, corresponding to the three Stokes parameters (S1, S2, and S3), can be simultaneously measured based on the Stokes-determined silicon photonic circuit output arrays so as to realize the full measurement of the incident polarization states. This on-chip polarimetry proposed here may enrich the family of micro-nano polarimetric devices, and pave the way to polarization-based integrated optoelectronics, nanophotonics, and metrology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call