Abstract

Observers design is addressed for a class of continuous-time, nonlinear dynamic systems with Lipschitz nonlinearities. A full-order state estimator is considered that depends on an innovation function made up of two terms: a linear gain and a feedforward neural network that provides a nonlinear contribution. The gain and the weights of the neural network are chosen in such way to ensure the convergence of the estimation error. Such a goal is achieved by constraining the derivative of a Lyapunov function to be negative definite on a sampling grid of points. Under assumptions on the smoothness of the Lyapunov function and of the distribution of the sampling points, the negative definiteness of the derivative of the Lyapunov function is obtained by minimizing a cost function that penalizes the constraints that are not satisfied. Suitable sampling techniques allow to reduce the computational burden required by the network's weights optimization. Simulations results are presented to illustrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.