Abstract

This paper describes the development of a novel, simple, and inexpensive electrochemical device containing an integrated and disposable three-electrode system for detection. The base of this platform consists on a PDMS structure containing microchannels which were prototyped using 3D-printed molds. Pencil graphite leads were inserted into these microchannels and utilized as working, counter and reference electrodes in a novel design. Morphological analysis and electrochemical experiments with benchmark redox probes were carried out in order to evaluate the performance and characterize the miniaturized device proposed. Even using inexpensive materials and a simple fabrication protocol, the electrochemical platform developed provided good repeatability and reproducibility over a low cost (ca. $2 per device), acceptable lifetime (ca. 250 voltammetric runs) and extremely reduced consumption of samples and reagents (order of µL). As proof of concept, the analytical feasibility of the platform was investigated through the simultaneous determination of dopamine (DOPA) and acetaminophen (AC). The two analytes showed linear dependence on the concentration range from 1 to 15µM and the LODs achieved were 0.21µM for DOPA and 0.29µM for AC. Moreover, the platform was successfully applied on the determination of DOPA and AC in spiked blood serum and urine samples. The results obtained with the device described here were better than some reports in literature that use more costly electrodic materials and complex modification steps for the detection of the same analytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call