Abstract

Vanishing white matter (VWM) is a hereditary human disease, mostly prevalent in childhood caused by the defects in the eukaryotic initiation factor beta subunits. It is the first disease involved in the translation initiation factor, eIF2B. There is no specific treatment for VWM which mainly affect the brain and ovaries. The gray matter remains normal in all characteristics while the white matter changes texture, coming to the pathophysiology, many initiation factors are involved in the initiation of translation of mRNAs into polypeptides. In this study, the three-dimensional structure of PhMTNA protein was modeled and the stability ascertained through Molecular dynamic simulation (MDS) for 100 ns. The active site residues are conserved with the reported BsMTNA structure which is also confirmed through sitemap prediction. Through virtual screening and induced fit docking, top five leads against PhMTNA protein was identified based on their binding mode and affinity. ADME properties and DFT (Density Functional Theory) studies of these compounds were studied. In addition to that, computational mutagenesis studies were performed to identify the hotspot residues involved in the protein-ligand interactions. Overall analysis showed that the compound NCI_941 has a highest binding energy of −46.256 kcal mol−1 in the Arg57Ala mutant. Thus, the results suggest that NCI_941 would act as a potent inhibitor against PhMTNA protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.