Abstract

Novel heteroarene oligomers, consisting of two pyridinium groups, linked by thiophene units of variable length, “thienoviologens”, are described as promising candidates for molecular wires. Two representative thienoviologens were coated by adsorption from micromolar concentrations in ethanol onto octadecylmercaptan (ODM)-coated gold electrodes and induced a gradual restoration of the electrochemistry with hexacyanoferrate as a function of molecular wire concentration. Glucose oxidase and choline oxidase showed strong adsorption to these conductive layers, but showed striking differences in adsorption to the different thienoviologen layers. The measurements support the hypothesis that the molecules are incorporated in the ODM layer in a different fashion. Also the complex formation of an engineered azurin redox protein with water-soluble pyridyl ligands is presented in relation to a possible application of the thienoviologens as conductive spacers, in which the contact with the redox protein is achieved via complex formation with a free pyridine nitrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.