Abstract

In this paper we present a genetic algorithm (GA)-based optimization procedure for the design of 2D, geometrical, nonlinear steel-framed structures. The approach presented uses GAs as a tool to achieve discrete nonlinear optimal or near-optimal designs. Frames are designed in accordance with the requirements of the AISC-LRFD specification. In this paper, we employ a group selection mechanism, discuss an improved adapting crossover operator, and provide recommendations on the penalty function selection. We compare the differences between optimized designs obtained by linear and geometrically nonlinear analyses. Through two examples, we will illustrate that the optimal designs are not affected significantly by the P-Δ effects. However, in some cases we may achieve a better design by performing nonlinear analysis instead of linear analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.