Abstract

Nevirapine (Viramune®) belongs to the first generation of non-nucleoside reverse transcriptase inhibitors (NNRTIs). Its efficiency is limited by drug resistant mutations, such as K103N and Y181C, so, the aim of this work was to design novel nevirapine analogues insensitive to the K103N and Y181C HIV-1 RT. 360 Nevirapine derivatives were designed using a combinatorial library design approach and these compounds were docked into the binding pocket of mutant HIV-1 RT enzyme structures, using the GOLD program. 124 Compounds having a GoldScore higher than that of nevirapine (55.00 and 52.00 for K103N and Y181C mutants, respectively) were first retrieved and submitted to a topological analysis with the SILVER program. Consequently, 31 compounds presenting a significant percentage of the surfaces buried upon binding (>80%) and exhibiting hydrogen bonds to either N103 or C181 residues of the HIV-RT were selected. To ensure that these compounds had hydrogen bonding interaction to either N103 or C181 residues, their interaction energies were estimated by quantum chemical calculations (QCCs). Finally, QCCs represent an alternative method for performing post docking procedure. †Presented at CMTPI 2005: Computational Methods in Toxicology and Pharmacology Integrating Internet resources (Shanghai, China, October 29–November 1 2005).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.