Abstract
Hard turning with cubic boron nitride (CBN) tools has been proven to be more effective and efficient than traditional grinding operations in machining hardened steels. However, rapid tool wear is still one of the major hurdles affecting the wide implementation of hard turning in industry. Better prediction of the CBN tool wear progression helps to optimize cutting conditions and/or tool geometry to reduce tool wear, which further helps to make hard turning a viable technology. The objective of this study is to design a novel but simple neural network-based generalized optimal estimator for CBN tool wear prediction in hard turning. The proposed estimator is based on a fully forward connected neural network with cutting conditions and machining time as the inputs and tool flank wear as the output. Extended Kalman filter algorithm is utilized as the network training algorithm to speed up the learning convergence. Network neuron connection is optimized using a destructive optimization algorithm. Besides performance comparisons with the CBN tool wear measurements in hard turning, the proposed tool wear estimator is also evaluated against a multilayer perceptron neural network modeling approach and/or an analytical modeling approach, and it has been proven to be faster, more accurate, and more robust. Although this neural network-based estimator is designed for CBN tool wear modeling in this study, it is expected to be applicable to other tool wear modeling applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.