Abstract

In digital communication bandwidth is essential parameter to be considered. Transmission and storage of images requires lot of memory in order to use bandwidth efficiently neural network and Discrete cosine transform together are used in this paper to compress images. Artificial neural network gives fixed compression ratio for any images results in fixed usage of memory and bandwidth. In this paper multi-layer feedforward neural network has been employed to achieve image compression. The proposed technique divides the original image in to several blocks and applies Discrete Cosine Transform (DCT) to these blocks as a pre-process technique. Quality of image is noticed with change in training algorithms, convergence time to attain desired mean square error. Compression ratio and PSNR in dB is calculated by varying hidden neurons. The proposed work is designed using MATLAB 7.10. and synthesized by mapping on Vertex 5 in Xilinx ISE for understanding hardware complexity. Keywords - backpropagation, Discrete

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.