Abstract

This paper discusses a method used to design planar bandpass filters for millimeter-wave applications in U- and W-band frequency ranges. For technical reasons, these filters have to be implemented on silicon-based technology. So as to decrease the insertion losses levels inherent in silicon substrate, we propose a thin-film microstrip-like technology implemented on a benzocyclobutene layer. In addition, a dual-behavior resonator-based filter topology enabled us to fit a hardened specification. In association with this new topology, we employed an automated design procedure that combines both circuit and full-wave simulations. It is based on a statistical sensitivity study performed by design-of-experiment analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call