Abstract

The generally encountered contradiction between large energy content and stability poses great difficulty in designing nitrogen-rich high-energy-density materials. Although N-N ylide bonds have been classified as the fourth type of homonuclear N-N bonds (besides >N-N<, -N[double bond, length as m-dash]N-, and N[triple bond, length as m-dash]N), accessible energetic molecules with N-N ylide bonds have rarely been explored. In this study, 225 molecules with six types of novel structures containing N-N ylide bonds were designed using density functional theory and CBS-QB3 methods. To guide future synthesis, the effects of substitution on the thermal stability, detonation velocity, and detonation pressure of the structures were evaluated under the premise that the N-N ylide skeleton remains stable. The calculations show that the bond dissociation energy values of the N-N ylide bonds of the designed 225 structures were in the range of 61.21-437.52 kJ mol-1, except for N-1NNH2. Many of the designed structures with N-N ylide bonds exhibit high detonation properties, which are superior to those of traditional energetic compounds. This study convincingly demonstrates the feasibility of the design strategy of introducing an N-N ylide bond to develop new types of energetic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.