Abstract

Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.