Abstract
This paper presents the design of a multilevel pyramidically wound symmetric (MPS) inductor structure. Being multilevel, the MPS inductor achieves high inductance to area ratio and hence occupies smaller silicon area. The symmetric inductor is realized by winding the metal trace of the spiral coil down and up in a pyramidal manner exploiting the multilevel VLSI interconnects technology. Closed form expressions are also developed to estimate the self resonating frequency (f res ) of the MPS inductor and results are compared to two layer conventional symmetric and asymmetric stack. The estimation is also validated with full wave electromagnetic simulation. The performance of various MPS inductors of different metal width, metal offsets and outer diameter is demonstrated. For an inductance of 8 nH, the MPS inductor reduces the area by 65---95% over conventional planar symmetric inductors and 71---94% over its equivalent pair of asymmetric planar inductors. The performance is also compared to other symmetric inductors reported in literature. With MPS inductor, the cost and size of RF IC's will be reduced significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.