Abstract

This paper proposes a saturated function series approach for generating multiscroll chaotic attractors from the fractional differential systems, including one-directional (1-D) n-scroll, two-directional (2-D) nxm-grid scroll, and three-directional (3-D) nxmxl-grid scroll chaotic attractors. Our theoretical analysis shows that all scrolls are located around the equilibria corresponding to the saturated plateaus of the saturated function series on a line in the 1-D case, a plane in the 2-D case, and a three-dimensional space in the 3-D case, respectively. In particular, each saturated plateau corresponds to a unique equilibrium and its unique scroll of the whole attractor. In addition, the number of scrolls is equal to the number of saturated plateaus in the saturated function series. Finally, some underlying dynamical mechanisms are then further investigated for the fractional differential multiscroll systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.