Abstract

Indomethacin is one of the nonsteroidal anti-inflammatory drugs (NSAIDs) that are widely prescribed drug for pain and inflammation. However, its notoriety of causing gastrointestinal effect, low water solubility, and its short half-life would affect patient compliance and its oral absorption and accordingly justify the need to develop a formula with a controlled and sustained release manner in combination with anti-ulcer drugs. Herein, we synthesized indomethacin-paracetamol co-drug loaded in nanoemulsion and encapsulated in famotiditine loaded polycaprolactone (PCL) nanoparticles. The synthesis of the co-drug was achieved by the formation of a hydrolyzable ester between the indomethacin and paracetamol. The synthesized co-drug was preloading in nanoemulsion (Co-NE), which encapsulated into famotidine PCL nanoparticles utilizing the nanoprecipitation approach. The developed nanosystem showed hydrodynamic size less than 200 nm and the zeta potential value above -30 mV. TEM images confirmed the morphological structure of the formed nanoemulsion and the loaded PCL nanoparticles. Stability studies revealed that the developed nanosystem was stable at different temperatures and pHs over 1 month. Moreover, improvement of the solubilities of these three drugs leading to have a controlled-release multicomponent system of both co-drug and famotidine over 3 days. This multicomponent nanoparticle might be a potential platform to overcome the obstacles of NSAIDs, synergize drugs with different mechanisms of actions by co-encapsulating a small-sized nanoemulsion into PCL nanoparticles for reaching the goal of effective anti-inflammatory therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call