Abstract

Monitoring the changes of cerebral hemodynamics and the state of consciousness during general anesthesia (GA) is clinically important. There is a great need for developing advanced detectors to investigate the physiological processes of the brain during GA. We developed a multichanneled, functional near-infrared spectroscopy (fNIRS) system device and applied it to GA operation monitoring. The cerebral hemodynamic data from the forehead of 11 patients undergoing propofol and sevoflurane anesthesia were analyzed. The concentration changes of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and cerebral tissue heart rate were determined from the raw optical information based on the discrete stationary wavelet transform. This custom-made device provides an easy-to-build solution for continuous wave-fNIRS system, with customized specifications. The developed device has a potential value in cerebral monitoring in clinical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.