Abstract
ABSTRACTOscillatory instability in modern power system has increased due to increasing complexity and integration of dynamic loads. Stability analysis of such interconnected power system is very prominent in the presence of uncertain load/generation. In this paper, a power system stabilizer (PSS) design approach, which aims at enhancing the oscillatory stability of the multi-machine power system over the specified uncertainty range in forecasted load/generation, is presented. With non-statistical uncertainty, problem of selecting design parameters of the PSS is formulated as an optimization problem with minimization of eigenvalues and damping ratios based multi-objective function. In order to account the non-statistical uncertainties, a boundary active power loss (BAPL) based objective function is proposed. This non-linear BAPL objective function is minimized for determining the optimal setting of the generators voltage and taps of the online tap changing transformers (OLTC) under various power system constraints. In this paper, both the objective functions are solved by a new metaheuristic technique known as gray wolf optimization (GWO). Boundary value-based approach is used to minimize the repeated load flows under uncertain load/generation scenarios. Improved small-signal stability (SSS) is achieved with optimal active power loss of uncertain power system. Eigenvalue and time domain analysis for New England system are carried out under wide range of disturbances to demonstrate the potential of the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.