Abstract
A theoretical design and experimental realization of multi-layer mirrors for Fabry–Perot interferometry and optical telecommunications is described in this work. The mirrors were designed and fabricated by 13 successive thin layers to achieve very high reflectance at optical wavelengths around 1300 nm. Thin layers are ZnS and MgF 2 presenting high and low refractive index, respectively. Layer thickness λ o/2 at λ o=656 nm. Experimental results include characterization of transmittance of mirrors around 1300 nm. Additionally, the mirrors were integrated in a Fabry–Perot interferometer to characterize optical sources emitting at 1300 nm. Finally to show a practical application, optical phase modulation was analyzed, using the fabricated mirrors through a scanning Fabry–Perot interferometer acting as high-resolution optical spectrum analyzer (OSA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.