Abstract
A low-complexity multi-antenna relaying scheme is proposed for Orthogonal Frequency Division Multiplexing (OFDM) in the presence of Class-A Impulsive Noise (IN). One way and two way relaying are considered. The signal is transmitted and received by two terminal nodes, each with a single antenna in two time phases. In the proposed design, the processing at the relay consists of Maximal-Ratio Combining (MRC) or Power-based Selection Combining (PSC) for receive combining, Amplify and Forward (AF) for power scaling, and Space Time Block Coding (STBC) for transmit diversity. Channel State Information (CSI), Discrete Fourier Transform (DFT), and Inverse Discrete Fourier Transform (IDFT) are not needed. The Selective Mapping (SLM) technique is used at the transmitter to reduce the Peak-to-Average Power Ratio (PAPR) of the OFDM signal. Then, at the receiver, the clipping technique is used to reduce the impulses that result from the impulsive noise. The proposed system reduces the complexity of the conventional system, which uses multi-relay with a single antenna. Simulation results show that the Bit Error Rate (BER) of the proposed scheme outperforms that of the conventional scheme due to the diversity inherent in the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.