Abstract
Energy storage is an emerging technology that can enable the transition toward renewable-energy-based distributed generation, reducing peak power demand and the time difference between production and use. The energy storage could be implemented both at grid level (concentrated) or at user level (distributed). Chemical batteries represent the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">de facto standard</i> of storage systems for performance and maturity; however, batteries feature a quite large environmental footprint and use precious raw materials. Mechanical storage technologies could represent a viable alternative to chemical batteries, because of their reduced impacts on the environment and on raw materials. This article presents the design of a motor/generator for a flywheel energy storage at household level. Three reference machines were compared by means of finite element analysis: a traditional iron-core surface permanent-magnet (SPM) synchronous machine, a synchronous reluctance machine (SynchRel), and an ironless SPM synchronous machine. Simulation shows that the ironless machine is good candidate for distributed energy storage, because of its high efficiency, high discharge duration, and low losses. A prototype ironless machine was designed and manufactured. Experiments confirm the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.