Abstract

This article experimentally investigates the inception of an innovative hard X-ray photon energy attenuation layer (PAL) to advance high-energy X-ray detection (20–50 keV). A bi-layer design with a thin film high-Z PAL on the top and Si image sensor on the bottom has previously demon-strated quantum yield enhancement via computational methods by the principle of photon energy down conversion (PEDC), where high-energy X-ray photon energies are attenuated via inelastic scattering down to ≤10 keV, which is suitable for efficient photoelectric absorption by Si. Quantum yield enhancement has been experimentally confirmed via a preliminary demonstration using PAL-integrated Si-based CMOS image sensors (Si CIS). Furthermore, substituting the high-Z PAL with a lower-Z material—Sn—and alternatively coupling it with a conventional scintillator ma-terial—Lutetium-yttrium oxyorthosilicate (LYSO)—have been compared to demonstrate the most prominent efficacy of monolithic integration of high-Z PAL on Si CIS to detect hard X-rays, paving the way for next-generation high-energy X-ray detection methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call