Abstract

AmpliDet RNA is a real-time diagnostic method, the specificity of which is defined mainly by the molecular beacon (MB). MBs can be characterized according to the stability of their stem-and-loop structures and that of the probe–target duplex via the free energies accompanying their formation. By the application of thermodynamic models, we propose a prediction method for these Δ G 0 parameters, which was compared to experimental analysis. The average absolute discrepancies for Δ G 0 41 and for the melting temperatures of MB secondary structures were 0.30±0.26 kcal/mol and 2.15±1.5 °C, respectively. Δ G 0 41 of probe–target interaction was predicted with a discrepancy of 1.2±1.0 kcal/mol. To characterize specificity, we formulated a model system with several MBs of highly similar sequence, but different lengths, and template RNAs carrying different types of mutations. We demonstrated the ability to detect a point mutation, or to tolerate one, irrespective of mismatch type. Of the nucleotide analogues tested, universal pyrimidine was found to increase MB tolerance substantially toward polymorphism. In the present study MBs were characterized under AmpliDet RNA conditions, with respect to probe stability, binding strength, and specificity, which led us to propose a design method, useful for probe design for AmpliDet RNA and adaptable to microarrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.