Abstract

A repetitive controller contains a pure-delay positive-feedback loop that makes it difficult to stabilize a strictly proper system. A low-pass filter is inserted in a repetitive controller to relax the stability condition of the modified repetitive-control system at the cost of degrading the tracking performance. In this study, a modified repetitive-control approach is developed, which reaches a balance between the stability and tracking performance for a class of affine nonlinear systems based on the Takagi–Sugeno fuzzy model. First, a 2D model is established to adjust continuous control and discrete learning actions preferentially induced by exploiting the 2D property in a repetitive-control process. Then, the Lyapunov stability theory and 2D system theory are used to derive a sufficient stability condition in the form of linear matrix inequalities to design parallel-distributed-compensation-based state-feedback controllers. Finally, an application-oriented example is used, and a comparison is performed to show that an extra variable is introduced such that the developed method has a better tracking performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.