Abstract
Multi-wavelength analog coherent links using mode-locked laser (MLL) frequency combs as transmitter and local oscillator (LO) sources are proposed. Carrier recovery (CR) in all wavelength channels is achieved using only two optical phase-locked loops (PLLs), while polarization demultiplexing and static phase offset removal are performed using cascaded optical phase shifters. A three-section Fabry-Perot semiconductor laser structure is proposed for the comb sources. Phase-error performance in a 2.6 Tb/s system using 56-Gbaud dual-polarization quadrature phase-shift keying on 13 channels is studied. For optical and microwave beat linewidths of 2 MHz and 1 kHz, respectively, achieving phase-error penalties below 1.5 dB requires PLL delays below 400 ps. A symmetric CR scheme is shown to achieve better phase-error performance than an asymmetric CR scheme. In 13-channel analog coherent links, the MLL comb-based design is projected to consume 38 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\%$</tex-math></inline-formula> less power than a resonator-enhanced electro-optic comb-based design and 20 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\%$</tex-math></inline-formula> less power than a design using arrays of single-wavelength lasers as transmitter and LO sources, excluding modulator driver power, which is identical for the three designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.