Abstract

The authors propose to exploit the unique properties of surface plasmons to enhance the signal-to-noise ratio of midinfrared photodetectors. The proposed photodetector consists of a slit in a metallic slab filled with absorptive semiconductor material. Light absorption in the slit is enhanced due to Fabry-Perot resonances. Further absorption enhancement is achieved by surrounding the slit with a series of periodic grooves that enable the excitation of surface plasmons that carry electromagnetic energy towards the slit. Using this scheme, they design and optimize a photodetector operating at λ0=9.8μm with a roughly 250 times enhancement in the absorption per unit of volume of semiconductor material compared to conventional photodetectors operating at the same wavelength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.