Abstract

Functional layered composites of the shape memory alloys are recently recognized as promising basic active element for microsystem technology and microrobotics. Amorphous-crystalline TiNiCu alloy ribbons at around 40 μm of thickness with an interface separating the amorphous and crystalline phases into layers were produced by melt spinning technique. It is shown that a decrease in the cooling rate of the melt from 8.9·105 to 4.2·105 K/s leads to an increase in the thickness of the crystalline layer from 2 to 10 μm. The ratio of the thicknesses of the amorphous dam and crystalline dcr layers was also varied by an electrochemical polishing method. The composite ribbons have exhibited the two-way shape memory effect (TWSME) of thermal induced bending deformation without additional thermomechanical training. It was established that when the ratio dcr/dam is changed from 0.06 to 0.35, the minimum bending radius of the ribbon decreases from 37.1 to 6.3 mm, and the maximum reversible strain increases by 0.05% to 0.27%. The minimum time of the shape recovery of the composite ribbons when heated by an electric current pulse was 14 ms, and the force generated by the ribbon with a length of 3 mm in bending reached 1.2 mN. A series of the microgrippers (microtweezers) were fabricated on the basis of the composite ribbons with TWSME. Complete technological process of manipulating graphite filaments with a diameter of 5 to 25 μm using developed microgrippers was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.