Abstract

In this paper, bandwidth improvement of reflection-mode linear to circular polarization converters (RMCPs) is studied. The proposed RMCP is based on multi-layer rectangular patches. Equivalent transmission line circuit of multi-layer reflection-mode polarization converters is used for designing the proposed metamirror. In addition, the approximate equation of axial ratio (AR) of the reflected wave is obtained from the structures containing rectangular patches on each layer. Polarization converters containing multi-layer rectangular patches can be utilized for different ranges of frequencies. However, the frequency range of 2–8 THz is considered in this paper without losing generality. The incident wave is assumed to be linearly polarized with 45° polarization angle. AR equation is used for initial optimization of the dimensions of rectangular patches to obtain the widest possible bandwidth of RMCPs with two- and three-layer patches. Secondary optimization is applied after specifying largest dimensions of the unit cell and excluding them from the variables of optimization. Finally, modified dimensions of the three-layer RMCP are obtained using parametrical study in simulations. The proposed three-layer polarization converter has the 3 dB axial ratio bandwidth of more than 116% and the permitted incident angle of higher than 25°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call