Abstract

AbstractThe glass composition design work leading to the discovery of highly crack resistant glasses exhibiting hydration‐induced stress profiles is described. Initial hydration studies on ternary aluminosilicate glasses show the importance of potassium for facilitating hydration. Further modification of the glass composition through the incorporation of P2O5 increased the hydration rate such that a specimen with a 29‐µm hydration depth was prepared by holding in an 85°C 85% relative humidity chamber for 65 days. Not only did this glass have a high Vickers indentation crack resistance of >20 kgf, but the sample also displayed considerable stored energy at failure. This indication of a stress profile was subsequently measured and a compressive stress (CS) of 400 MPa with a compressive depth of layer of 29 µm was found. The initially long process times were shortened using pressurized steam vessels. When held at 250°C and .3 MPa, samples can be prepared with surface CSs >300 MPa and compressive depths >30 µm in less than 8 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call