Abstract

AbstractMechanical energy scavengers convert irregular input mechanical energy into irregular electrical output. There is a need to enable uniform and predictable electric output from energy scavengers regardless of the variability in the mechanical input. So, in this work, a mechanical frequency regulator is proposed that fixes the input forces and input frequency acting on a triboelectric nanogenerator, thus enabling predictable electric output. The irregular low frequency mechanical input energy is first stored in a spiral spring following which the energy is released at the desired frequency by means of an appropriate design of gear train, cam, and flywheel. By regulating the nanogenerator output at 50 Hz, a standard power transformer can be optimally driven to increase the output current to 6.5 mA and reduce its voltage to 17 V. This output is highly compatible for powering wireless node sensors as is demonstrated in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.