Abstract

Despite the well-reported MLCT [dπ(M) → π*(CNR)] transitions in the isocyano transition metal complexes, emissive complexes with phosphorescence derived from MLCT [dπ(M) → π*(CNR)] were not extensively studied. To provide insights into the design strategy of phosphorescent rhenium(I) complexes with an emissive 3MLCT [dπ(Re) → π*(CNR)] excited state, a series of pentaisocyano rhenium(I) complexes have been synthesized. In contrast to most of the reported penta- or hexaisocyano rhenium(I) complexes with unsubstituted or alkyl- or monohalo-substituted phenylisocyanide ligands, which only exhibit photoluminescence in 77 K glassy medium, the solutions of all of these complexes were found to show phosphorescence at room temperature. Detailed study on their emission properties revealed that they are derived from the 3MLCT [dπ(Re) → π*(CNR)] excited state mixed with LL'CT character. It has been shown that the strong electron-withdrawing substituents on the isocyanide ligands can lower the energy of the MLCT [dπ(Re) → π*(CNR)] state and raise the deactivating ligand-field state. These effects are the crucial criteria to render the pentaisocyano rhenium(I) complexes emissive. Moreover, the emission properties in terms of energy, lifetime, and quantum yields can also be enhanced by the ancillary ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.