Abstract
Activity Recognition (AR) is monitoring the liveliness of a person by using smart phone. Smart phones are used in a wider manner and it becomes one of the ways to identify the human’s environmental changes by using the sensors in smart mobiles. Smart phones are equipped in detecting sensors like compass sensor, gyroscope, GPS sensor and accelerometer. Human Activity Recognition (HAR) framework collects the raw data from sensors and observes the human movement using different classification methods. This paper focuses for Activity Recognition (AR) based on smart phone by analyzing the performance of various Deep Learning (DL) approach using in-built gyroscope and accelerometers. In this work, HAR dataset can be utilized from UCI based Machine Learning repository. The sensors such as gyroscope and accelerator are used to record the signals and performs various activities namely walking- downstairs, walking-upstairs, jogging, standing, walking and sitting while a user wearing the smartphone in a pocket. The performance metrics has analyzed to recognize user’s activities using DL approach namely Recurrent Neural Network with Long-Short Term Memory (RNN- LSTM) were applied. The result provides 96% better accuracy for RNN-LSTM with minimum Mean Absolute Percentage Error (MAPE) when compare to other machine learning classifier.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.